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Abstract— The field of graph indexing and query processing has 
received a lot of attention due to the constantly increasing usage of 
graph data structures for representing data in different application 
domains. To support efficient querying technique is a key issue in 
all graph based application. In this paper, we propose an index trie 
structure (GCTrie) that is constructed with our proposed graph 
representative structure called graph code. Our proposed GCtrie 
can support all types of graph query. In this paper, we focus on 
index construction, subgraph query and supergraph query 
processing. The experimental results and comparisons offer a 
positive response to the proposed approach. 

Keywords-graph indexing and querying; graph representative 
structure; index; subgraph query; supergraph query  

I.  INTRODUCTION 
Many scientific and commercial applications urge for 

patterns that are more complex and complicated to process than 
frequent item sets and sequential patterns. Such sophisticated 
patterns range from sets and sequences to trees, lattices and 
graphs. As one of the most general form of data representation, 
graphs easily represent entities, their attributes and their 
relationships to other entities. The significant of using graphs to 
represent complex datasets has been recognized in different 
disciplines such as chemical domain [6], computer vision [7], 
and image and object retrieval [8]. Various conferences over 
the past few years on mining graphs have motivated 
researchers to focus on the importance of mining graph data. 
Different applications result in different kinds of graphs, and 
the corresponding challenges are also quite different. A graph 
describes relationships over a set of entities. With nodes and 
edges labels, a graph can depict the attributes of both the entity 
set and the relation. For example, chemical data graphs are 
relatively small but the labels on different nodes (which are 
drawn from a limited set of elements) may be repeated many 
times in a single molecule (graph).  

Storing the graphs into large datasets is a challenging task 
as it deals with efficient space and time management. Over the 
years, a number of different representative structures have been 
developed to represent graphs more and more efficiently and 
uniquely. Developing such structures is particularly 
challenging in terms of storage space and generation time. 
Among many representative structures adjacency list [9] and 
adjacency matrix [10] are the most common. We have already 
proposed a new graph representative structure called graph 
code [1]. Graph code is a new way of representing graphs to 
support all kinds of graph queries without verifying between 

graph structures. A good graph indexing and querying 
approach should have compact indexing structures and has a 
good power of pruning the false graphs in the dataset. The 
strategy of graph indexing is to move high costly online query 
processing to off-line index construction phase [2]. Chemical 
graphs in datasets are undirected labelled graphs. So, graph 
code is developed to process undirected labelled graphs. Graph 
code can retain the structural information of original graph 
such as which two edges are connected on which vertex. 

To effectively understand and utilize any collection of 
graphs, an approach that efficiently supports elementary 
querying mechanism is crucially required. Given a query 
graph, the task of retrieving related graphs as a result of the 
query from a large graph dataset is a key issue in all graph 
based applications. This has raised a crucial need for efficient 
graph indexing and querying approaches. A primary challenge 
in computing the answers of graph queries is that pair-wise 
comparisons of graphs are usually really hard problems. It is 
apparent that the success of any graph based application is 
directly dependent on the efficiency of the graph indexing and 
query processing mechanisms. Recently, there are many 
techniques that have been proposed to tackle these problems. 

In principle, queries in graph datasets can be broadly 
classified into the four categories: graph isomorphism query, 
subgraph query, supergraph query, and similarity query. Most 
of the existing graph indexing and querying approaches 
proposed to deal with only one type of the query problem. Our 
proposed approach allows the chemical compound dataset to be 
queried chemical structures in terms of XML file format. Using 
proposed approach, all types of graph queries can be processed. 
After entering a chemical structure as a query, user can process 
their desired query types. In this paper, we describe our 
proposed graph code structure, and GCTrie, and also perform 
subgraph query and supergraph query processing by probing 
GCTrie. We also perform experimental analysis on index 
construction and on these queries using proposed approach and 
other existing approaches. 

II. PRELIMINARIES 
For simplicity, we present the key concepts, notations, and 

terminology used in our proposed approach which includes 
labeled undirected graph, graph automorphism, subgraph 
query, supergraph query, and graph code. 

As a general data structure, labeled graphs is used to model 
complicated structures and schemaless data. In labeled graph, 
vertex and edge represent entity and relationship, respectively. 
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The attributes associated with entities and relationships are 
called labels. XML is a kind of directed labeled graph. The 
chemical compound shown in Fig. 1 is labeled undirected 
graph. 

 
 
 

 
 
 
 
 
 
 

Figure 1.  A Labeled Undirected Graph 

Definition 1. Labeled Undirected Graph 
A labeled undirected graph G is defined as 5-tuple, (V, E, 

LV, LE, l) where V is the non-empty finite vertex set called 
vertices, and E is the unordered pairs of vertices called edges. 
LV and LE are the set of labels of vertices and edges and l is a 
labelling function assigning a label to a vertex l: V to LV and 
an edge l: E to LE. 

  
Definition 2. Graph Isomorphism 

Let G = (V, E, LV, LE, l) and G' = (V', E', L'V, L'E, l') be two 
graphs. An automorphism between two graphs G and G' is an 
isomorphism mapping where G = G'. An isomorphism 
mapping is a mapping of the vertices of G to vertices of G' that 
preserve the edge structure of the graphs. That is, it is a graph 
isomorphism from a graph G to itself. 

 
Definition 3. Subgraph Query 

This category searches for a specific pattern in the graph 
dataset. The pattern can be a small graph. Therefore, given a 
graph dataset D = {G1, G2,…, Gi} and a subgraph query q,the 
answer set A = {Gi|q ⊆ Gi, Gi ∈ D }.  

 
Definition 4. Supergraph Query 

Given a graph dataset D = {G1, G2,…, Gi} and a supergraph 
query q, if a query q is a supergraph of a dataset graph, the 
answer set A = { Gi| Gi ⊆ q, Gi ∈ D }. 

 
Definition 5. Graph Code 

For a graph Gi, the code of Gi, denoted by c(Gi) is the list of 
the form eid[(v), eid_adj]… depending on adjacent edges. eid is 
the edge id, v is vertex label on which two edges are connected, 
eid_adj is adjacent edge id for this edge. 

 

III. RELATED WORKS 
Graphs are used to represent many real life applications. 

Graphs can be used to represent networks. The networks may 
include paths in a city or telephone network or circuit network. 
Graphs are also used in social networks like linkedIn, 
facebook. Many graph datasets (e.g., chemical compounds) 
have more than one vertex with the same label. Same graph is 
stored more than once in the graph datasets leading to adverse 
results of mining. To ensure the consistency of graph datasets, 

required a mechanism to check whether two graphs are 
automorphic or not. So, detection and elimination of 
automorphic graphs is required. In proposed approach, a graph 
is represented via its graph code generated by using adjacent 
edge information and edge dictionary. Instead of expensive 
graph automorphism test, automorphic graphs can be detected 
by matching codes of two graphs [3].  

GraphGrep [4] was proposed that is a path-based technique 
to index graph datasets. It has three basic components: 
building the index to represent graphs as sets of paths, filtering 
dataset based on query and computing exact matching. 
GraphGrep enumerates paths up to a threshold length (lp) from 
each graph. An index table is constructed and each entry in the 
table is the number of occurrences of the path in the graph. 
Filtering phase generates a set of candidate graphs for which 
the count of each path is at least that of the query. Verification 
phase verifies each candidate graph by subgraph matching. 
However, the graph dataset contains huge amount of paths and 
can have an effect on the performance of the index. 

OrientDB [5] is an open source NoSQL database 
management system written in java. It is a multi-model 
database, supporting graph, document, key/value, and object 
models, but the relationships are managed as in graph 
databases with direct connections between records. It supports 
schema-less, schema-full and schema-mixed modes. It has a 
strong security profiling system based on users and roles and 
supports querying with SQL extended for graph traversal. 

 

IV. PROPOSED APPROACH 
 
In our proposed approach, there are three main phases: 

code generation phase, subgraph query and supergraph query 
processing phase, and graph isomorphism query and similarity 
query processing phase. There are three sub-steps in code 
generation phase. These are preprocessing, code generation and 
automorphism checking, and index construction. In subgraph 
query and supergraph query processing phase, there are four 
sub-steps: preprocessing, code generation, subgraph querying 
and supergraph querying. In graph isomorphism query and 
similarity query processing phase, there are also four sub-steps, 
preprocessing, code generation, and graph isomorphism 
querying and similarity querying. In this paper, we focus on 
index construction step, and subgraph query and supergraph 
query processing phase.  

 

A. Preprocessing, CodeGeneration and Automorphism 
Checking 
In preprocessing, the graph information such as vertex 

information, edge information, and adjacent edge information 
are generated by parsing input xml files with xml parser. The 
edge information of the graph is defined as (Vid,L,Vid) where Vid 
is the vertex id, L is the edge label. Then adjacent edge 
information is generated. Fig. 2 shows graph information for 
graph G1 in Fig. 1. 
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Figure 2.  Graph Information of G1 (a) Vertex Information (b) Edge 
Information (c) Adjacent Edge Information 

For each edge from the graph’s edge information, check the 
edge dictionary to determine whether the edge is already 
existed in edge dictionary or not. If not, insert new edge into 
edge dictionary. Then, the edge ids are associated with their 
corresponding edges in graph’s edge information. Edge 
dictionary is shown in Fig. 3.  

 

 

 

 

Figure 3.  Edge Dictionary 

A graph is represented holistically into a graph code that 
preserves the structural information of the graph. Every edge in 
the graph is assigned with global unique identifier already 
defined in the edge dictionary. Instead of using the edge itself, 
using the edge id of the edge dictionary can have advantages in 
three ways:  

• Firstly, using the edge id in the code saves the amount 
of storage space. 

• Secondly, using the same id for the duplicated edge is 
effective when constructing the graph code. 

• Thirdly, using the edge id in the code reduces the 
time for finding automorphic or isomorphic graphs. 

 Most of the chemical graphs have a lot of common edges. 
So, edge dictionary uses little memory space. Edge dictionary 
and adjacent edge information are used to generate graph 
code. Graph code for graph G1 is as follows: 
  

 

 

After computing the graph code of Gk, compares it with  
each graph code Gi in code store (CS), 1 <= i < k, to check 
graph automorphism. If the graph code of Gk has the same code 
as that of Gi, concludes that the two graphs are automorphic 
and append id of Gk to corresponding graph code of Gi. 
Otherwise, add the graph code of Gk to CS assuming as Gk is a 
new graph. 

B. Index Construction 
After generating graph codes for all dataset graphs and 

checking automorphism, the next step is to construct GCTrie 
for efficient querying. Instead of using path or subgraph 
decomposition to support subgraph query type which has 
result in strctural information lost and exhaustive enumeration 
time problems, we propose an index trie structure called 
GCTrie for supporting all types of graph query. We put the 
graph codes of all dataset graphs in GCTrie. A GCTrie is a trie 
where each node except the root node is a string array that 
represents an edge id or an vertex label on which two edges 
are connected.  There are five levels in the GCTrie. The 
second and fourth level is for edge ids. The third level is for 
vertex labels and the last is for leaves which are implemented 
by hashmaps of graph ids and their frequencies. Procedure for 
index construction is shown as follows. We represent one 
edge’s adjacent code, e.g; 1[o,2] as feature f. 

 
Procedure. IndexConstruction(CS) 
For each c(Gi) ∈ CS 
      For each feature f ∈ c(Gi) 
            Put f in GCTrie 
return GCTrie 

 
In index GCTrie construction, for the graph code of G1 

from CS, c(G1): 1[c,1],1[c,1],1[c,1],1[c,2],1[c,1],1[c,2], 
2[c,1],2[o,2],2[c,1],2[o,2], there are four occurrences of 
features 1[c,1]. There are two occurrences of features 1[c,2], 
2[c,1] and 2[o,2]. So, the GCTrie after putting c(G1) is as 
shown in Fig. 4. 

 

 

Figure 4.  GCTrie After Putting c(G1) 

Id  Edge 
1 <C,s,C> 
2 <C,s,O> 
… … 

Vertex id    : 1 2 3 4 5 
Vertex Info : C C C C O 

 
 
 

Vid,L,Vi: <1,s,2> <1,s,3> <2,s,4> <3,s,5> <4,s,5> 

Edge Info: <C,s,C> <C,s,C> <C,s,C> <C,s,O> <C,s,O> 

 
 

Edge: Adjacent Edges: 

<1,s,2> <1,s,3>, <2,s,4> 
<1,s,3> <1,s,2>, <3,s,5> 
<2,s,4> <1,s,2>, <4,s,5> 
<3,s,5> <1,s,3>, <4,s,5> 
<4,s,5> <2,s,4>, <3,s,5> 

 

(a) 

(b) 

(c) 

c(G1)=1[c,1],1[c,1],1[c,1],1[c,2],1[c,1],1[c,2],2[c,1],2[o,2]    
,2[c,1],2[o,2] 
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Then we put all dataset graph codes from CS into this 
GCTrie. When the query graph enters into the system, vertex 
information, edge information and adjacent edge information 
of query graph is generated in preprocessing step. Then the 
query graph code is generated in code generation phase using 
system’s edge dictionary and query adjacent edge information. 
Each feature from query graph code is probed in GCTrie. 

C. Subgraph Querying 
In the core of many graph-related applications lies a 

common and critical problem of how to efficiently process 
subgraph query. In some cases, the success of an application 
directly relies on the efficiency of the query processing system. 
The classical graph query problem can be described as follows: 
given a graph dataset D = {G1,G2,…,Gn} and a graph query q, 
finds all the graphs in which q is a subgraph. If all of the query 
features are matched with features of data graph codes in the 
GCTrie but the size of dataset graphs are larger than query 
graph size, then the dataset graphs are returned as answer set. 
The following algorithm 1 describes the step-by-step process 
for subgraph query. 

Algorithm 1 SubgraphQuery 
Input : GCTrie, and Query q 
Output : Answer set Dq. 
1. Generate graph code for query q. 
2. Let Dq = D 
3. For each feature qf ∈ c(q) 
4.      Probe qf in GCTrie. 
5.      If qf ∈ GCTrie 
6.           Intersect Dq and Dqf. 
7. For each Gi ∈ Dq 
8.      If size(Gi) < size(q) 
9.           Remove Gi from Dq. 
10. Return Dq; 

 
Assume that we have generated the graph code of the query 

graph. We establish a necessary condition that forms the basis 
for processing subgraph query. Thus we state the following 
theorem. 

Theorem 1 Given a query graph q, if q is a subgraph of a 
dataset graph G, then c(q) ⊆ c(G). 

Proof.  By definition, if q is a subgraph of G, then every feature 
of q appears in G. Therefore, if parametric quantities of c(q) are 
contained in c(G), then c(q) ⊆ c(G). 

The intuition is as follows. If a query q is a subgraph of a 
dataset graph, then all of its features are a subset of the features 
of the dataset graph. Therefore, the adjacent edges of each edge 
that appear in the graph code of the query will definitely appear 
in the graph code of the dataset graph. 

D. Supergraph Querying 
Supergraph query searches for the graph dataset members 

of which their whole features are contained in the input query. 
Formally, given a dataset D = {G1,G2,…,Gn} and a supergraph 
query q, if q is a supergraph of the dataset graphs then all of its 
features form a superset of the features of the resulted dataset 

graphs. The large number of graphs in datasets and the NP-
completeness of subgraph isomorphism testing make it 
challenging to efficiently processing supergraph queries. 

In our propose approach, when the query graph enters, it is 
represented as a query graph code. Each feature from query’ 
graph code is probed in GCTrie. If all of the query features are 
matched with features data graph codes in the GCTrie but the 
query graph size is larger than the dataset graphs’ size. Then 
the dataset graphs are returned as answer set that are contained 
in query as subgraph. The step-by-step process of supergraph 
query is described as the following algorithm 2. 

Algorithm 2 SupergraphQuery 
Input : GCTrie, and Query q 
Output : Answer set Dq. 
1. Generate graph code for query q. 
2. Let Dq = D 
3. For each feature qf ∈ c(q) 
4.      Probe qf in GCTrie. 
5.      If qf ∈ GCTrie 
6.           Intersect Dq and Dqf. 
7. For each Gi ∈ Dq 
8.      If size(Gi) > size(q) 
9.           Remove Gi from Dq. 
10. Return Dq; 

 
Assume that we have generated the graph code of the query 

graph. We establish a necessary condition that forms the basis 
for processing supergraph query. Then we state the following 
theorem. 

 
Theorem 2 Given a query graph q, if q is a supergraph of a 
dataset graph G, then c(G) ⊆ c(q). 
 
Proof.  By definition, if q is a supergraph of G, then every 
feature of G appears in q. Therefore, if parametric quantities of 
c(G) are contained in c(q), then c(G) ⊆ c(q). 

 
The intuition is as follows. If a query q is a supergraph of a 

dataset graph, then all of its features form a superset of the 
feature of the resulted dataset graphs. Therefore, the adjacent 
edges of each edge that appear in the graph code of the dataset 
graph will definitely appear in the graph code of the query.  

 

V. EXPERIMENTAL ANALYSIS 
A performance analysis for proposed approach is presented 

in this section. The main goal of the experiment is to represent 
the performance evaluation of our proposed approach apply on 
AIDS antiviral screen compound dataset, NCI yeast anticancer 
drug screen dataset, and primary screening dataset for 
Formylpeptide Receptor.  

Index Construction times for graph indexing approaches 
such as GraphGrep, OrientDB and our proposed approach are 
analyzed. All of the approaches are implemented in java on 
Intel(R) Core (TM) i3-4010U CPU with 2GB memory and 
Window7 34-bit operating system. Fig. 5, Fig. 6, and Fig. 7 
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shows the index construction times vary for different 
approaches on three datasets respectively. Various numbers of 
chemical graphs are tested and take the average index 
construction times to compare GraphGrep, OrientDB and our 
proposed approach. For GraphGrep, We use two values 4 and 
10 for parameter: the length of path (lp). It can be seen that our 
proposed approach consumes at least 10 times less than 
OrientDB in index construction and at least 102 times less than 
GraphGrep (lp = 4) and GraphGrep (lp = 10) respectively.  

 

 
Figure 5.  Analysis of Index Construction Time of Three Different 

Approaches for AIDS Antiviral Screen Dataset 

 
Figure 6.  Analysis of Index Construction Time of Three Different 

Approaches for NCI Yeast Anti-cancer Drug Screen Dataset 

 

Figure 7.  Analysis of Index Construction Time of Three Different 
Approaches for Primary Screening Dataset for Formylpeptide Receptor 

We evaluate the query response time of our proposed 
approach with GraphGrep on AIDS antiviral screen dataset, 
NCI yeast anti-cancer drug screen dataset and primary 
screening dataset for Formylpeptide Receptor. Since 
GraphGrep only support subgraph isomorphism query, we can 
evaluate subgraph isomorphism query response time with it. 
For GraphGrep, we use two values 4 and 10 for parameter; the 
length of path (lp). Fig. 8 shows the analysis of subgraph 
isomorphism query response time over AIDS antiviral screen 
dataset. It can be seen that our proposed approach significantly 
reduces at least 103 times for subgraph isomorphism query 
response time when compare to GraphGrep. 

 
Figure 8.  Analysis of Subgraph Query Response Time Between GraphGrep 

and Proposed Approach on AIDS antiviral screen Dataset 

Fig. 9 shows the analysis of subgraph isomorphism query 
response time over NCI yeast anti-cancer drug screen dataset. 
Fig. 10 shows the analysis of subgraph isomorphism query 
response time over primary screening dataset for 
Formylpeptide Receptor. It can be seen that our proposed 
approach significantly reduces at least 102 times and 103 times 
of subgraph isomorphism query response time less than when 
compare to GraphGrep over NCI yeast anti-cancer drug screen 
dataset and primary screening dataset for Formylpeptide 
Receptor respectively. 

 

 
Figure 9.  Analysis of Subgraph Query Response Time Between GraphGrep 

and Proposed Approach on NCI Yeast Anti-cancer Drug Screen Dataset 
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Figure 10.  Analysis of Subgraph Query Response Time Between GraphGrep 

and Proposed Approach on Primary Screenin Dataset for Formylpeptide 
Receptor Dataset 

 

VI. CONCLUSIONN AND ONGOING WORKS 
Proposed graph code used edge dictionary and adjacent 

edges information to preserve the structural information of the 
original graph. Instead of expensive pair-wise comparisons, it 
can be efficiently used to detect automorphic graphs. Instead 
of path or subgraph decomposition process which could result 
in structural information lost and exhausted enumeration time, 
GCTrie is used to support all query types. From our 
experimental results, proposed approach outperforms the 
existing methods in index construction time and subgraph 
query response time. Similarity query processing is going to 
be observed as our ongoing work. 
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