
(IJCSIS) International Journal of Computer Science and Information Security,
Vol. XIII, No. XII, December 2015

GCTrie for Efficient Querying in Cheminformatics

Yu Wai Hlaing
Ph.D candidate

University of Computer Studies
Yangon, Myanmar

yuwaihlaing.1987@gmail.com

Kyaw May Oo
Faculty of Computing

University of Information Technology
Yangon, Myanmar

kmayoo19@gmail.com

Abstract— The field of graph indexing and query processing has
received a lot of attention due to the constantly increasing usage of
graph data structures for representing data in different application
domains. To support efficient querying technique is a key issue in
all graph based application. In this paper, we propose an index trie
structure (GCTrie) that is constructed with our proposed graph
representative structure called graph code. Our proposed GCtrie
can support all types of graph query. In this paper, we focus on
index construction, subgraph query and supergraph query
processing. The experimental results and comparisons offer a
positive response to the proposed approach.

Keywords-graph indexing and querying; graph representative
structure; index; subgraph query; supergraph query

I. INTRODUCTION
Many scientific and commercial applications urge for

patterns that are more complex and complicated to process than
frequent item sets and sequential patterns. Such sophisticated
patterns range from sets and sequences to trees, lattices and
graphs. As one of the most general form of data representation,
graphs easily represent entities, their attributes and their
relationships to other entities. The significant of using graphs to
represent complex datasets has been recognized in different
disciplines such as chemical domain [6], computer vision [7],
and image and object retrieval [8]. Various conferences over
the past few years on mining graphs have motivated
researchers to focus on the importance of mining graph data.
Different applications result in different kinds of graphs, and
the corresponding challenges are also quite different. A graph
describes relationships over a set of entities. With nodes and
edges labels, a graph can depict the attributes of both the entity
set and the relation. For example, chemical data graphs are
relatively small but the labels on different nodes (which are
drawn from a limited set of elements) may be repeated many
times in a single molecule (graph).

Storing the graphs into large datasets is a challenging task
as it deals with efficient space and time management. Over the
years, a number of different representative structures have been
developed to represent graphs more and more efficiently and
uniquely. Developing such structures is particularly
challenging in terms of storage space and generation time.
Among many representative structures adjacency list [9] and
adjacency matrix [10] are the most common. We have already
proposed a new graph representative structure called graph
code [1]. Graph code is a new way of representing graphs to
support all kinds of graph queries without verifying between

graph structures. A good graph indexing and querying
approach should have compact indexing structures and has a
good power of pruning the false graphs in the dataset. The
strategy of graph indexing is to move high costly online query
processing to off-line index construction phase [2]. Chemical
graphs in datasets are undirected labelled graphs. So, graph
code is developed to process undirected labelled graphs. Graph
code can retain the structural information of original graph
such as which two edges are connected on which vertex.

To effectively understand and utilize any collection of
graphs, an approach that efficiently supports elementary
querying mechanism is crucially required. Given a query
graph, the task of retrieving related graphs as a result of the
query from a large graph dataset is a key issue in all graph
based applications. This has raised a crucial need for efficient
graph indexing and querying approaches. A primary challenge
in computing the answers of graph queries is that pair-wise
comparisons of graphs are usually really hard problems. It is
apparent that the success of any graph based application is
directly dependent on the efficiency of the graph indexing and
query processing mechanisms. Recently, there are many
techniques that have been proposed to tackle these problems.

In principle, queries in graph datasets can be broadly
classified into the four categories: graph isomorphism query,
subgraph query, supergraph query, and similarity query. Most
of the existing graph indexing and querying approaches
proposed to deal with only one type of the query problem. Our
proposed approach allows the chemical compound dataset to be
queried chemical structures in terms of XML file format. Using
proposed approach, all types of graph queries can be processed.
After entering a chemical structure as a query, user can process
their desired query types. In this paper, we describe our
proposed graph code structure, and GCTrie, and also perform
subgraph query and supergraph query processing by probing
GCTrie. We also perform experimental analysis on index
construction and on these queries using proposed approach and
other existing approaches.

II. PRELIMINARIES
For simplicity, we present the key concepts, notations, and

terminology used in our proposed approach which includes
labeled undirected graph, graph automorphism, subgraph
query, supergraph query, and graph code.

As a general data structure, labeled graphs is used to model
complicated structures and schemaless data. In labeled graph,
vertex and edge represent entity and relationship, respectively.

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. XIII, No. XII, December 2015

The attributes associated with entities and relationships are
called labels. XML is a kind of directed labeled graph. The
chemical compound shown in Fig. 1 is labeled undirected
graph.

Figure 1. A Labeled Undirected Graph

Definition 1. Labeled Undirected Graph
A labeled undirected graph G is defined as 5-tuple, (V, E,

LV, LE, l) where V is the non-empty finite vertex set called
vertices, and E is the unordered pairs of vertices called edges.
LV and LE are the set of labels of vertices and edges and l is a
labelling function assigning a label to a vertex l: V to LV and
an edge l: E to LE.

Definition 2. Graph Isomorphism

Let G = (V, E, LV, LE, l) and G' = (V', E', L'V, L'E, l') be two
graphs. An automorphism between two graphs G and G' is an
isomorphism mapping where G = G'. An isomorphism
mapping is a mapping of the vertices of G to vertices of G' that
preserve the edge structure of the graphs. That is, it is a graph
isomorphism from a graph G to itself.

Definition 3. Subgraph Query

This category searches for a specific pattern in the graph
dataset. The pattern can be a small graph. Therefore, given a
graph dataset D = {G1, G2,…, Gi} and a subgraph query q,the
answer set A = {Gi|q ⊆ Gi, Gi ∈ D }.

Definition 4. Supergraph Query

Given a graph dataset D = {G1, G2,…, Gi} and a supergraph
query q, if a query q is a supergraph of a dataset graph, the
answer set A = { Gi| Gi ⊆ q, Gi ∈ D }.

Definition 5. Graph Code

For a graph Gi, the code of Gi, denoted by c(Gi) is the list of
the form eid[(v), eid_adj]… depending on adjacent edges. eid is
the edge id, v is vertex label on which two edges are connected,
eid_adj is adjacent edge id for this edge.

III. RELATED WORKS
Graphs are used to represent many real life applications.

Graphs can be used to represent networks. The networks may
include paths in a city or telephone network or circuit network.
Graphs are also used in social networks like linkedIn,
facebook. Many graph datasets (e.g., chemical compounds)
have more than one vertex with the same label. Same graph is
stored more than once in the graph datasets leading to adverse
results of mining. To ensure the consistency of graph datasets,

required a mechanism to check whether two graphs are
automorphic or not. So, detection and elimination of
automorphic graphs is required. In proposed approach, a graph
is represented via its graph code generated by using adjacent
edge information and edge dictionary. Instead of expensive
graph automorphism test, automorphic graphs can be detected
by matching codes of two graphs [3].

GraphGrep [4] was proposed that is a path-based technique
to index graph datasets. It has three basic components:
building the index to represent graphs as sets of paths, filtering
dataset based on query and computing exact matching.
GraphGrep enumerates paths up to a threshold length (lp) from
each graph. An index table is constructed and each entry in the
table is the number of occurrences of the path in the graph.
Filtering phase generates a set of candidate graphs for which
the count of each path is at least that of the query. Verification
phase verifies each candidate graph by subgraph matching.
However, the graph dataset contains huge amount of paths and
can have an effect on the performance of the index.

OrientDB [5] is an open source NoSQL database
management system written in java. It is a multi-model
database, supporting graph, document, key/value, and object
models, but the relationships are managed as in graph
databases with direct connections between records. It supports
schema-less, schema-full and schema-mixed modes. It has a
strong security profiling system based on users and roles and
supports querying with SQL extended for graph traversal.

IV. PROPOSED APPROACH

In our proposed approach, there are three main phases:

code generation phase, subgraph query and supergraph query
processing phase, and graph isomorphism query and similarity
query processing phase. There are three sub-steps in code
generation phase. These are preprocessing, code generation and
automorphism checking, and index construction. In subgraph
query and supergraph query processing phase, there are four
sub-steps: preprocessing, code generation, subgraph querying
and supergraph querying. In graph isomorphism query and
similarity query processing phase, there are also four sub-steps,
preprocessing, code generation, and graph isomorphism
querying and similarity querying. In this paper, we focus on
index construction step, and subgraph query and supergraph
query processing phase.

A. Preprocessing, CodeGeneration and Automorphism
Checking
In preprocessing, the graph information such as vertex

information, edge information, and adjacent edge information
are generated by parsing input xml files with xml parser. The
edge information of the graph is defined as (Vid,L,Vid) where Vid
is the vertex id, L is the edge label. Then adjacent edge
information is generated. Fig. 2 shows graph information for
graph G1 in Fig. 1.

C C

C C

O

1 2

3 4

5

s

s

s

s s

G1

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. XIII, No. XII, December 2015

Figure 2. Graph Information of G1 (a) Vertex Information (b) Edge
Information (c) Adjacent Edge Information

For each edge from the graph’s edge information, check the
edge dictionary to determine whether the edge is already
existed in edge dictionary or not. If not, insert new edge into
edge dictionary. Then, the edge ids are associated with their
corresponding edges in graph’s edge information. Edge
dictionary is shown in Fig. 3.

Figure 3. Edge Dictionary

A graph is represented holistically into a graph code that
preserves the structural information of the graph. Every edge in
the graph is assigned with global unique identifier already
defined in the edge dictionary. Instead of using the edge itself,
using the edge id of the edge dictionary can have advantages in
three ways:

• Firstly, using the edge id in the code saves the amount
of storage space.

• Secondly, using the same id for the duplicated edge is
effective when constructing the graph code.

• Thirdly, using the edge id in the code reduces the
time for finding automorphic or isomorphic graphs.

 Most of the chemical graphs have a lot of common edges.
So, edge dictionary uses little memory space. Edge dictionary
and adjacent edge information are used to generate graph
code. Graph code for graph G1 is as follows:

After computing the graph code of Gk, compares it with
each graph code Gi in code store (CS), 1 <= i < k, to check
graph automorphism. If the graph code of Gk has the same code
as that of Gi, concludes that the two graphs are automorphic
and append id of Gk to corresponding graph code of Gi.
Otherwise, add the graph code of Gk to CS assuming as Gk is a
new graph.

B. Index Construction
After generating graph codes for all dataset graphs and

checking automorphism, the next step is to construct GCTrie
for efficient querying. Instead of using path or subgraph
decomposition to support subgraph query type which has
result in strctural information lost and exhaustive enumeration
time problems, we propose an index trie structure called
GCTrie for supporting all types of graph query. We put the
graph codes of all dataset graphs in GCTrie. A GCTrie is a trie
where each node except the root node is a string array that
represents an edge id or an vertex label on which two edges
are connected. There are five levels in the GCTrie. The
second and fourth level is for edge ids. The third level is for
vertex labels and the last is for leaves which are implemented
by hashmaps of graph ids and their frequencies. Procedure for
index construction is shown as follows. We represent one
edge’s adjacent code, e.g; 1[o,2] as feature f.

Procedure. IndexConstruction(CS)
For each c(Gi) ∈ CS
 For each feature f ∈ c(Gi)
 Put f in GCTrie
return GCTrie

In index GCTrie construction, for the graph code of G1

from CS, c(G1): 1[c,1],1[c,1],1[c,1],1[c,2],1[c,1],1[c,2],
2[c,1],2[o,2],2[c,1],2[o,2], there are four occurrences of
features 1[c,1]. There are two occurrences of features 1[c,2],
2[c,1] and 2[o,2]. So, the GCTrie after putting c(G1) is as
shown in Fig. 4.

Figure 4. GCTrie After Putting c(G1)

Id Edge
1 <C,s,C>
2 <C,s,O>
… …

Vertex id : 1 2 3 4 5
Vertex Info : C C C C O

Vid,L,Vi: <1,s,2> <1,s,3> <2,s,4> <3,s,5> <4,s,5>

Edge Info: <C,s,C> <C,s,C> <C,s,C> <C,s,O> <C,s,O>

Edge: Adjacent Edges:

<1,s,2> <1,s,3>, <2,s,4>
<1,s,3> <1,s,2>, <3,s,5>
<2,s,4> <1,s,2>, <4,s,5>
<3,s,5> <1,s,3>, <4,s,5>
<4,s,5> <2,s,4>, <3,s,5>

(a)

(b)

(c)

c(G1)=1[c,1],1[c,1],1[c,1],1[c,2],1[c,1],1[c,2],2[c,1],2[o,2]
,2[c,1],2[o,2]

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. XIII, No. XII, December 2015

Then we put all dataset graph codes from CS into this
GCTrie. When the query graph enters into the system, vertex
information, edge information and adjacent edge information
of query graph is generated in preprocessing step. Then the
query graph code is generated in code generation phase using
system’s edge dictionary and query adjacent edge information.
Each feature from query graph code is probed in GCTrie.

C. Subgraph Querying
In the core of many graph-related applications lies a

common and critical problem of how to efficiently process
subgraph query. In some cases, the success of an application
directly relies on the efficiency of the query processing system.
The classical graph query problem can be described as follows:
given a graph dataset D = {G1,G2,…,Gn} and a graph query q,
finds all the graphs in which q is a subgraph. If all of the query
features are matched with features of data graph codes in the
GCTrie but the size of dataset graphs are larger than query
graph size, then the dataset graphs are returned as answer set.
The following algorithm 1 describes the step-by-step process
for subgraph query.

Algorithm 1 SubgraphQuery
Input : GCTrie, and Query q
Output : Answer set Dq.
1. Generate graph code for query q.
2. Let Dq = D
3. For each feature qf ∈ c(q)
4. Probe qf in GCTrie.
5. If qf ∈ GCTrie
6. Intersect Dq and Dqf.
7. For each Gi ∈ Dq
8. If size(Gi) < size(q)
9. Remove Gi from Dq.
10. Return Dq;

Assume that we have generated the graph code of the query

graph. We establish a necessary condition that forms the basis
for processing subgraph query. Thus we state the following
theorem.

Theorem 1 Given a query graph q, if q is a subgraph of a
dataset graph G, then c(q) ⊆ c(G).

Proof. By definition, if q is a subgraph of G, then every feature
of q appears in G. Therefore, if parametric quantities of c(q) are
contained in c(G), then c(q) ⊆ c(G).

The intuition is as follows. If a query q is a subgraph of a
dataset graph, then all of its features are a subset of the features
of the dataset graph. Therefore, the adjacent edges of each edge
that appear in the graph code of the query will definitely appear
in the graph code of the dataset graph.

D. Supergraph Querying
Supergraph query searches for the graph dataset members

of which their whole features are contained in the input query.
Formally, given a dataset D = {G1,G2,…,Gn} and a supergraph
query q, if q is a supergraph of the dataset graphs then all of its
features form a superset of the features of the resulted dataset

graphs. The large number of graphs in datasets and the NP-
completeness of subgraph isomorphism testing make it
challenging to efficiently processing supergraph queries.

In our propose approach, when the query graph enters, it is
represented as a query graph code. Each feature from query’
graph code is probed in GCTrie. If all of the query features are
matched with features data graph codes in the GCTrie but the
query graph size is larger than the dataset graphs’ size. Then
the dataset graphs are returned as answer set that are contained
in query as subgraph. The step-by-step process of supergraph
query is described as the following algorithm 2.

Algorithm 2 SupergraphQuery
Input : GCTrie, and Query q
Output : Answer set Dq.
1. Generate graph code for query q.
2. Let Dq = D
3. For each feature qf ∈ c(q)
4. Probe qf in GCTrie.
5. If qf ∈ GCTrie
6. Intersect Dq and Dqf.
7. For each Gi ∈ Dq
8. If size(Gi) > size(q)
9. Remove Gi from Dq.
10. Return Dq;

Assume that we have generated the graph code of the query

graph. We establish a necessary condition that forms the basis
for processing supergraph query. Then we state the following
theorem.

Theorem 2 Given a query graph q, if q is a supergraph of a
dataset graph G, then c(G) ⊆ c(q).

Proof. By definition, if q is a supergraph of G, then every
feature of G appears in q. Therefore, if parametric quantities of
c(G) are contained in c(q), then c(G) ⊆ c(q).

The intuition is as follows. If a query q is a supergraph of a

dataset graph, then all of its features form a superset of the
feature of the resulted dataset graphs. Therefore, the adjacent
edges of each edge that appear in the graph code of the dataset
graph will definitely appear in the graph code of the query.

V. EXPERIMENTAL ANALYSIS
A performance analysis for proposed approach is presented

in this section. The main goal of the experiment is to represent
the performance evaluation of our proposed approach apply on
AIDS antiviral screen compound dataset, NCI yeast anticancer
drug screen dataset, and primary screening dataset for
Formylpeptide Receptor.

Index Construction times for graph indexing approaches
such as GraphGrep, OrientDB and our proposed approach are
analyzed. All of the approaches are implemented in java on
Intel(R) Core (TM) i3-4010U CPU with 2GB memory and
Window7 34-bit operating system. Fig. 5, Fig. 6, and Fig. 7

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. XIII, No. XII, December 2015

shows the index construction times vary for different
approaches on three datasets respectively. Various numbers of
chemical graphs are tested and take the average index
construction times to compare GraphGrep, OrientDB and our
proposed approach. For GraphGrep, We use two values 4 and
10 for parameter: the length of path (lp). It can be seen that our
proposed approach consumes at least 10 times less than
OrientDB in index construction and at least 102 times less than
GraphGrep (lp = 4) and GraphGrep (lp = 10) respectively.

Figure 5. Analysis of Index Construction Time of Three Different

Approaches for AIDS Antiviral Screen Dataset

Figure 6. Analysis of Index Construction Time of Three Different

Approaches for NCI Yeast Anti-cancer Drug Screen Dataset

Figure 7. Analysis of Index Construction Time of Three Different
Approaches for Primary Screening Dataset for Formylpeptide Receptor

We evaluate the query response time of our proposed
approach with GraphGrep on AIDS antiviral screen dataset,
NCI yeast anti-cancer drug screen dataset and primary
screening dataset for Formylpeptide Receptor. Since
GraphGrep only support subgraph isomorphism query, we can
evaluate subgraph isomorphism query response time with it.
For GraphGrep, we use two values 4 and 10 for parameter; the
length of path (lp). Fig. 8 shows the analysis of subgraph
isomorphism query response time over AIDS antiviral screen
dataset. It can be seen that our proposed approach significantly
reduces at least 103 times for subgraph isomorphism query
response time when compare to GraphGrep.

Figure 8. Analysis of Subgraph Query Response Time Between GraphGrep

and Proposed Approach on AIDS antiviral screen Dataset

Fig. 9 shows the analysis of subgraph isomorphism query
response time over NCI yeast anti-cancer drug screen dataset.
Fig. 10 shows the analysis of subgraph isomorphism query
response time over primary screening dataset for
Formylpeptide Receptor. It can be seen that our proposed
approach significantly reduces at least 102 times and 103 times
of subgraph isomorphism query response time less than when
compare to GraphGrep over NCI yeast anti-cancer drug screen
dataset and primary screening dataset for Formylpeptide
Receptor respectively.

Figure 9. Analysis of Subgraph Query Response Time Between GraphGrep

and Proposed Approach on NCI Yeast Anti-cancer Drug Screen Dataset

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. XIII, No. XII, December 2015

Figure 10. Analysis of Subgraph Query Response Time Between GraphGrep

and Proposed Approach on Primary Screenin Dataset for Formylpeptide
Receptor Dataset

VI. CONCLUSIONN AND ONGOING WORKS
Proposed graph code used edge dictionary and adjacent

edges information to preserve the structural information of the
original graph. Instead of expensive pair-wise comparisons, it
can be efficiently used to detect automorphic graphs. Instead
of path or subgraph decomposition process which could result
in structural information lost and exhausted enumeration time,
GCTrie is used to support all query types. From our
experimental results, proposed approach outperforms the
existing methods in index construction time and subgraph
query response time. Similarity query processing is going to
be observed as our ongoing work.

ACKNOWLEDGEMENT
This research was supported by University of Computer

Studies, Yangon and University of Information Technology.
We thank our colleagues who provided insight and expertise
that greatly assisted the research.

REFERENCES
[1] Y. W. Hlaing and K. M. Oo, “A graph representative structure for

detecting automorphic graphs,” in the Proceeding of 9th International
Conference on Genetic and Evolutionary Computing, August 2015,
pp.189-197.

[2] S. Sakr and G. Al-Naymat, “Graph indexing and querying : a review,” in
International Journal of Web Information Systems, vol. 6 No.2, 2010,
pp.101-120.

[3] Y. W. Hlaing and K. M. Oo, “Graph code based isomorphism query on
graph data,” in the Proceeding of 2015 IEEE International Conference
on Smart City/SocialCom/SustainCom together with DataCom 2015 and
SC2 2015 (SmartCity 2015), Dec 2015, in press.

[4] D. Shasha, J. T. L. Wang, R. Giugno, “Algorithmic and Applications if
Tree and Graph Searching”, 2002.

[5] OrientDB https://en.wikipedia.org/wiki/OrientDB
[6] R. N. Chittimoori, L. B. Holder, and D. J. Cook, “Applying the

SUBDUE substructure discovery system to the chemical toxicity
domain,” in Proceeding of the 12th international Florida AI, Research
Society Conference, 2003, pp.90-94.

[7] D. A. Piriyakumar, and P. Levi, “An Efficient A* based algorithm for
optimal graph matching applied to computer vision,” in GRWSIA-98,
Munich, 1998.

[8] D. Dupplaw, and P. H. Lewis, “Content-based image retrieval with
scale-spaced object trees,” in Proceeding of SPIE: Storage and Retrieval
for Media Databases, Volume 3972, 2000, pp.253-261.

[9] Adjacency List http://en.wikipedia.org/wiki/Adjacency_list.
[10] Adjacency Matrix http://en.wikipedia.org/wiki/Adjacency_matrix.

AUTHORS PROFILE

Y. W. Hlaing received her bachelor degree in Computer
Science (2006) from university of Computer Studies, Yangon
and her master degree in Computer Science (2008) from
Computer University, Mawlamyine. She is now a Ph.D
candidate at University of Computer Studies, Yangon.

K. M. Oo received her B.Sc. in Mathematics from Yangon
University; M.I.Sc. from Institute of Computer Science and
Technology(ICST); and Ph.D. in Information Science from
University of Computer Studies, Yangon(UCSY), Myanmar in
1994, 1996, and 2007 respectively. Currently, she is an
associate professor in the Faculty of Computing, University of
Information Technology (UIT), Myanmar. Her research
interests include graph theory, and data mining.
Asdnsflksdfndsss

ss
ss
ss
ss
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

	I. Introduction
	II. Preliminaries
	III. Related Works
	IV. Proposed Approach
	A. Preprocessing, CodeGeneration and Automorphism Checking
	B. Index Construction
	C. Subgraph Querying
	D. Supergraph Querying

	V. Experimental Analysis
	VI. Conclusionn and Ongoing Works
	Acknowledgement
	References

